1,007 research outputs found

    Algorithmic Randomness for Infinite Time Register Machines

    Full text link
    A concept of randomness for infinite time register machines (ITRMs), resembling Martin-L\"of-randomness, is defined and studied. In particular, we show that for this notion of randomness, computability from mutually random reals implies computability and that an analogue of van Lambalgen's theorem holds

    Modelling UV irradiances on arbitrarily oriented surfaces: effects of sky obstructions

    No full text
    International audienceA method is presented to calculate UV irradiances on inclined surfaces that additionally takes into account the influence of sky obstructions caused by obstacles such as mountains, houses, trees, or umbrellas. Thus the method allows calculating the impact of UV radiation on biological systems, such as for instance the human skin or eye, in any natural or artificial environment. The method, a combination of radiation models, is explained and the correctness of its results is demonstrated. The effect of a natural skyline is shown for an Alpine ski area, where the UV irradiance even on a horizontal surface may increase due to reflection at snow by more than 10%. In contrast in a street canyon the irradiance on a horizontal surface is reduced down to 30% in shadow and to about 75% for a position in the sun

    Global square and mutual stationarity at the ℵn

    Get PDF
    AbstractWe give the proof of a theorem of Jensen and Zeman on the existence of a global □ sequence in the Core Model below a measurable cardinal κ of Mitchell order (oM(κ)) equal to κ++, and use it to prove the following theorem on mutual stationarity at ℵn.Let ω1 denote the first uncountable cardinal of V and set Cof(ω1) to be the class of ordinals of cofinality ω1. TheoremIf every sequence (Sn)n<ω of stationary sets Sn⊆Cof(ω1)∩ℵn+2, is mutually stationary, then there is an inner model with infinitely many inaccessibles (κn)n<ω so that for every mthe class of measurables λ with oM(λ)≥κm is, in V, stationary in κn for all n>m. In particular, there is such a model in which for all sufficiently large m<ω, the class of measurables λ with oM(λ)≥ωm is, in V, stationary below ℵm+2

    Generalized Effective Reducibility

    Full text link
    We introduce two notions of effective reducibility for set-theoretical statements, based on computability with Ordinal Turing Machines (OTMs), one of which resembles Turing reducibility while the other is modelled after Weihrauch reducibility. We give sample applications by showing that certain (algebraic) constructions are not effective in the OTM-sense and considerung the effective equivalence of various versions of the axiom of choice

    Optical properties of aerosols and clouds: The software package OPAC

    Get PDF
    The software package OPAC (Optical Properties of Aerosols and Clouds) is described. It easily provides optical properties in the solar and terrestrial spectral range of atmospheric particulate matter. Microphysical and optical properties of six water clouds, three ice clouds, and 10 aerosol components, which are considered as typical cases, are stored as ASCII files. The optical properties are the extinction, scattering, and absorption coefficients, the single scattering albedo, the asymmetry parameter, and the phase function. They are calculated on the basis of the microphysical data (size distribution and spectral refractive index) under the assumption of spherical particles in case of aerosols and cloud droplets and assuming hexagonal columns in case of cirrus clouds. Data are given for up to 61 wavelengths between 0.25 and 40 mu m and up to eight values of the relative humidity. The software package also allows calculation of derived optical properties like mass extinction coefficients and Angstrom coefficients. Real aerosol in the atmosphere always is a mixture of different components. Thus, in OPAC it is made possible to get optical properties of any mixtures of the basic components and to calculate optical depths on the base of exponential aerosol height profiles. Typical mixtures of aerosol components as well as typical height profiles are proposed as default values, but mixtures and profiles for the description of individual cases may also be achieved simply

    Silicon on Ceramic Process: Silicon Sheet Growth and Device Development for the Large-area Silicon Sheet and Cell Development Tasks of the Low-cost Solar Array Project

    Get PDF
    The technical and economic feasibility of producing solar cell quality sheet silicon was investigated. It was hoped this could be done by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Work was directed towards the solution of unique cell processing/design problems encountered with the silicon-ceramic (SOC) material due to its intimate contact with the ceramic substrate. Significant progress was demonstrated in the following areas; (1) the continuous coater succeeded in producing small-area coatings exhibiting unidirectional solidification and substatial grain size; (2) dip coater succeeded in producing thick (more than 500 micron) dendritic layers at coating speeds of 0.2-0.3 cm/sec; and (3) a standard for producing total area SOC solar cells using slotted ceramic substrates was developed

    CLEVR-X: A Visual Reasoning Dataset for Natural Language Explanations

    Get PDF
    Providing explanations in the context of Visual Question Answering (VQA) presents a fundamental problem in machine learning. To obtain detailed insights into the process of generating natural language explanations for VQA, we introduce the large-scale CLEVR-X dataset that extends the CLEVR dataset with natural language explanations. For each image-question pair in the CLEVR dataset, CLEVR-X contains multiple structured textual explanations which are derived from the original scene graphs. By construction, the CLEVR-X explanations are correct and describe the reasoning and visual information that is necessary to answer a given question. We conducted a user study to confirm that the ground-truth explanations in our proposed dataset are indeed complete and relevant. We present baseline results for generating natural language explanations in the context of VQA using two state-of-the-art frameworks on the CLEVR-X dataset. Furthermore, we provide a detailed analysis of the explanation generation quality for different question and answer types. Additionally, we study the influence of using different numbers of ground-truth explanations on the convergence of natural language generation (NLG) metrics. The CLEVR-X dataset is publicly available at \url{https://explainableml.github.io/CLEVR-X/}

    Project Cerberus: Flyby Mission to Pluto

    Get PDF
    The goal of the Cerberus Project was to design a feasible and cost-effective unmanned flyby mission to Pluto. The requirements in the request for proposal for an unmanned probe to Pluto are presented and were met. The design stresses proven technology that will avoid show stoppers which could halt mission progress. Cerberus also utilizes the latest advances in the spacecraft industry to meet the stringent demands of the mission. The topics covered include: (1) mission management, planning, and costing; (2) structures; (3) power and propulsion; (4) attitude, articulation, and control; (5) command, control, and communication; and (6) scientific instrumentation

    Modelling the direct effect of aerosols in the solar near-infrared on a planetary scale

    Get PDF
    International audienceWe used a spectral radiative transfer model to compute the direct radiative effect (DRE) of natural plus anthropogenic aerosols in the solar near-infrared (IR), between 0.85?10 ?m, namely, their effect on the outgoing near-IR radiation at the top of atmosphere (TOA, ?FTOA), on the atmospheric absorption of near-IR radiation (?Fatmab) and on the surface downward and absorbed near-IR radiation (?Fsurf, and ?Fsurfnet, respectively). The computations were performed on a global scale (over land and ocean) under all-sky conditions, using detailed spectral aerosol optical properties taken from the Global Aerosol Data Set (GADS) supplemented by realistic data for the rest of surface and atmospheric parameters. The computed aerosol DRE, averaged over the 12-year period 1984?1995 for January and July, shows that on a global mean basis aerosols produce a planetary cooling by increasing the scattered near-IR radiation back to space by 0.48 W m?2, they warm the atmosphere by 0.37 W m?2 and cool the surface by decreasing the downward and absorbed near-IR radiation at surface by 1.03 and 0.85 W m?2, respectively. The magnitude of the near-IR aerosol DRE is smaller than that of the combined ultraviolet (UV) and visible DRE, but it is still energetically important, since it contributes to the total shortwave (SW) DRE by 22?31%. The aerosol-produced near-IR surface cooling combined with the atmospheric warming, may affect the thermal dynamics of the Earth-atmosphere system, by increasing the atmospheric stability, decreasing thus cloud formation, and precipitation, especially over desertification threatened regions such as the Mediterranean basin. This, together with the fact that the sign of near-IR aerosol DRE is sometimes opposite to that of UV-visible DRE, demonstrates the importance of performing detailed spectral computations to provide estimates of the climatic role of aerosols for the Earth-atmosphere system. This was demonstrated by sensitivity tests revealing very large differences (up to 300%) between aerosol DREs computed using detailed spectral and spectrally-averaged aerosol optical properties. Our model results indicate thus that the aerosol direct radiative effect on the near-IR radiation is very sensitive to the treatment of the spectral dependence of aerosol optical properties and solar radiation
    • …
    corecore